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1 Gaussian Concentration

1.1 Freedman’s inequality

Last time, we generalized the Hoeffding and Bernstein inequalities for independent random
variables to Azuma-Hoeffding and “Azuma Bernstein inequalities for martingales.”

Our “Azuma-Bernstein” inequality says that if E[eλDk | Fk−1] ≤ eλ
2ν2k/2, then∣∣∣∣∣ 1n

n∑
k=1

Dk

∣∣∣∣∣ ≤ max


√

2
n

∑n
k=1 ν

2
k

n
log

(
2

δ

)
,
2α∗ log

(
2
δ

)
n

 with probability 1− δ.

However, sometimes ν2k is not deterministic and ν2k = E[D2
k | Fk−1] instead is Fk−1 mea-

surable.

Theorem 1.1 (Freedman’s inequality). Let {(Dk,Fk)} be a martingale difference sequence
such that

1. E[Dk | Fk=1] = 0.

2. Dk ≤ b a.s.

Then for all λ ∈ (0, 1/b) and δ ∈ (0, 1),

P

(
T∑
t=1

Xt ≤ λ
T∑
t=1

E[D2
k | Fk−1] +

log(1/δ)

λ

)
≥ 1− δ.

This is useful in bandit and reinforcement learning research.1

1For example, see Theorem 1 in Beygelzimer, Langford, et. al. 2010.
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1.2 Maximal Azuma-Hoeffding inequality

Recall Doob’s maximal inequality for sub-martingales.

Lemma 1.1 (Doob’s maximal inequality). If {Xs}s≥0 is a sub-martingale, i.e.

Xs ≤ E[Xt | Fs] ∀s < t,

then for all u > 0,

P

(
sup

0≤t≤T
Xt ≥ u

)
≤ E[max{XT , 0}]

u
.

This gives rise to a maximal version of the Azuma-Hoeffding inequality:

Theorem 1.2 (Maximal Azuma-Hoeffding inequality). Let {(Dk,Fk)} be a martingale
difference sequence, and suppose there exists {(ak, bk)}nk=1 such that Dk ∈ (ak, bk) a.s.
Then

P

(
sup

0≤k≤n

k∑
s=1

Dk ≥ t

)
≤ exp

(
− 2t2∑n

k=1(bk − ak)2

)
.

If we used the usual Azuma-Hoeffding inequality instead, we would need to use a union
bound, which would give a factor of n in the bound. We can write this conclusion as

sup
0≤k≤n

k∑
s=1

Dk ≤
√
C log(1/δ)

n
.

If we have the extra factor of n, we get an n/δ instead, which can sometimes be not a big
deal for our bound since we are taking a log.

1.3 Gaussian concentration

Lemma 1.2. Let X1, X2, . . . , Xn
iid∼ N(0, 1) and f : Rn → R such that f is L-Lipschitz

in ‖ · ‖2, i.e.
|f(x)− f(y)| ≤ L‖x− y‖2 ∀x, y ∈ Rn.

Then

1. f(X1:n)− E[f(X1:n)] is sG(L).

2.

P(|f(X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− t2

2L2

)
.

Remark 1.1. We need f to be Lipschitz as a whole function! It’s not just sufficient for
the function to be coordinate-wise Lipschitz.
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Remark 1.2. If the Xis are non-Gaussian, this doesn’t always hold with only Lipschitz-
ness.

There are many different proofs of this lemma, but none are very simple.

Proof 1: Gaussian interpolation method

Proof 2: Gaussian isoperimetric inequality

Proof 3: Gaussian log-Sobolev inequality + Herbst argument

Today, we will present a proof using the Gaussian interpolation method, which is useful
in research. However, this is a technique where you need to develop some intuition to
understand it.

1.4 Examples of Gaussian concentration

Example 1.1 (Order statistics). Let (Xi)i∈[n]
iid∼ N(0, 1). The order statistics are the

random variables arranged in increasing order: X(1) ≤ X(2) ≤ · · · ≤ X(n). Let fk(X1:n) =
X(k). This is Lipschitz:

|fk(X1:n)− fk(Y1:n)| = |X(k) − Y(k)|

≤

√√√√ n∑
k=1

|X(k) − Y(k)|2

The rearrangement inequality says that if you sort the terms, the distance is greater
than the distance of with unsorted terms.

≤

√√√√ n∑
k=1

|Xk − Yk|2

= ‖X − Y ‖2.

This means that L = 1, so X(k) − E[X(k)] is sG(1). Therefore,

|X(k) − E[X(k)]| ≤
√

log(2/δ) with probability 1− δ.

If we apply this to k = n, we get∣∣∣∣∣∣∣∣∣max
i∈[n]

Xi − E
[
max
i∈[n]

Xi

]
︸ ︷︷ ︸√

2 logn

∣∣∣∣∣∣∣∣∣ = Op(1).
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Example 1.2 (Singular value of Gaussian random matrices). Let

X =

X1,1 · · · X1,d

...
...

Xn,1 · · · Xn,d

 ∈ Rn×d, Xi,j
iid∼ N(0, 1).

Let fk(X) = σk(X) be the k-th largest singular value of X. For example, f1(X) = ‖X‖op.
It can be shown that E[‖X‖op] ≈

√
n +
√
d. We can show that fk is Lipschitz; what is

the norm we want to be using for a matrix? Define the vectorized version of the matrix as
vec(X) := (X1,1, X1,2, . . . , X1,d, X2,1, . . . , X2,d, . . . , Xn,d). Then

‖ vec(X)− vec(Y )‖2 = ‖X − Y ‖F =

√∑
i,j

(Xi,j − Yi,j)2,

where ‖ · ‖F is the Frobenius norm. Now we have

|fk(X)− fk(Y )| ≤ |σk(X)− σk(Y )|
Weyl’s inequality, a deterministic linear algebra result, says that

≤ ‖X − Y ‖op
≤ ‖X − Y ‖F ,

so L = 1. Weyl’s inequality can be proven by using the variational representation of
singular values.

This calculation tells us that fk(X)− E[fk(X)] is sG(1), so

fk(X)− E[fk(X)] ≤
√

log(2/δ) with probability 1− δ.

Applying this to k = 1 gives

|‖X‖op − E[‖X‖op]︸ ︷︷ ︸
√
n+
√
d

| = O(1).

1.5 Gaussian complexity

Gaussian complexity is a very important notion in compressed sensing. Suppose we have
a set A ⊆ Rn. How do we measure its “size”? A reasonable size function S should at least
satisfy S(A) ≤ S(B) if A ⊆ B. Here are some reasonable size functions:

1. Euclidean width: D(A) = maxa∈A ‖a‖2.

2. Dimension: A line has dimension 1, and a plane has dimension 2.
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Definition 1.1. Given a set A, let W = (W1, . . . ,Wn)> ∈ Rn with Wi
iid∼ N(0, 1). The

Gaussian complexity or ”statistical dimension” of A is

G(A) := EW∼N(0,In)

[
sup
a∈A
〈a,W 〉

]
.

Note that if we don’t take the supreumum in the expectation, the quantity would be
0. This quantity is always nonnegative.

Example 1.3. Let Bp(r) = {x ∈ |Rn : ‖x‖p ≤ r}. Then

G(Bp(r)) = E

[
sup
‖x‖p≤r

〈x,W 〉

]
If q is the conjugate exponent of p, so 1

p + 1
q = 1, this is the variational representation of

the ‖ · ‖q norm:

rE[‖W‖q]
≈ rn1/q.

Note that if p1 ≤ p2, then q1 ≥ q2, so G(Bp1(r)) ≤ G(Bp2(r)).

We want to show that f(W ) := supa∈A〈a,W 〉 concentrates. Fix w,w′ ∈ Rn. Then

f(w)− f(w′) = sup
a∈A
〈a,w〉 − sup

a∈A
〈a,w′〉

Denote a∗ = arg maxa〈a,w〉
= 〈a∗, w〉 − sup

a∈A
〈a,w′〉

= inf
a∈A
〈a∗, w〉 − 〈a,w′〉

≤ 〈a∗w − w′〉
≤ ‖a∗‖‖w − w′‖2
≤ D(A)‖w − w′‖2.

The other side can be proven similarly, so f is D(A)-Lipschitz. Concentration says that
f(W ) is sG(D(A)).

Example 1.4. If we let A = B2(R), then

E[f(W )] = G(B2(r)) = r
√
n,

since D(A) = r.
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1.6 Proof of the Gaussian concentration inequality (interpolation method)

Lemma 1.3. For all convex φ : R→ R and differentiable f : Rn → R,

E[φ(f(X)− E[f(Y )])] ≤ E[φ(π2 〈∇f(X), Y 〉],

where X,Y
iid∼ N(0, In).

First, assume this lemma holds, and prove Gaussian concentration:

Proof. Take φ = exp(λ·). THen

E[exp(λ(f(X)− E[f(Y )]))] ≤ E[exp(λπ2 〈∇f(X), Y 〉)]

Observe that π
2 〈∇f(X), Y 〉 is N(0, π

2

4 ‖∇f(X)‖22 given X.

= EX [exp(λ
2

2

π2

4
‖∇f(X)‖22)]

≤ exp

(
λ2

2

π2

4
L2

)
.

This says that f(X)− E[f(X)] is sG(π2L).

The above proof gives a worse constant, but the constant can be improved with different
methods. Here is the proof of the lemma:

Proof. First, use conditioning and Jensen’s inequality to say that.

E[φ(f(X)− E[f(Y )])] ≤ EX,Y [φ(f(X)− f(Y ))]

The idea is to use the integral representation of the Taylor expansion to interpolate between

X and Y . Observe that if Z(θ) = X cos θ + Y sin θ, then for every θ, Z(θ)
d
= X

d
= Y and

Z ′(θ)
d
= X

d
= Y . Another important property is that Z(θ) ⊥ Z ′(θ); this is because

Z(θ), Z ′(θ) are Gaussians with 0 covariance. Now

f(X)− f(Y ) =

∫ π/2

0
〈∇f(Z(θ)), Z ′(θ)〉 dθ,

so we can write

E[φ(f(X)− f(Y ))] = E

[
φ

(∫ π/2

0
〈∇f(Z(θ)), Z ′(θ)〉 dθ

)]
Using Jensen’s inequality, φ(

∫
· dθ) ≤

∫
φ(· · · ) dθ when

∫
· · · dθ = 1.

≤ 2

π

∫ π/2

0
E[φ(π2 〈∇f(Z(θ)), Z ′(θ)〉)] dθ

= E[φ(π2 〈∇f(X), Y 〉)].

This proof is very delicate, and the construction looks ad hoc, but it is actually very
useful in a variety of situations.
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1.7 Other methods for establishing concentration

1. Matrix concentration: If (Xi)i∈[n] ⊆ Rm×d with Xi
iid∼ X, can we find a bound for∥∥∥∥∥ 1

n

n∑
i=1

Xi − E[Xi]

∥∥∥∥∥
op

?

The answer is yes; there is a matrix Bernstein inequality, Rudelson’s inequality, and
a matrix Freedman inequality. These involve the matrix MGF and Lieb’s inequality.
For more, see An Introduction to Matrix Inequalities, Tropp 2015, and Introduction
to Non-asymptotic analysis of random matrices, Vershynin 2010.

2. Entropy method and the Herbst argument

Definition 1.2. The Herbst argument is that a sufficient condition for X to be
sG(σ) is to show that

H(eλX) ≤ λ2σ2

2
E[eλX ],

where H is the entropy.

Why do we want to look at H(eλX)? This is because it has a good tensorization
property when Xi are independent:

H(eλf(X1:n)) ≤ E

[
n∑
i=1

H( eλfk(Xk) | X\k︸ ︷︷ ︸
easy to handle when fk Lip., Xk bdd.

)

]

For this, see chapter 3.1 of Wainwright’s textbook or chapter 3 of van Handel’s
textbook

3. Isoperimetric inequality: This is a geometric property in Rn with Lebesgue measure.
If A ⊆ Rn has fixed volume and we want to minimize the perimeter, then the solution
is when A is a ball. This generalizes to other measures:

X ∼ µ = N(0, In) Sn−1(
√
n) Unif({±1}n)

Half space Spherical cap Hamming ball

The isoperimetric inequality implies that f(X) concentrates when f is Lipschitz. For
this, see chapter 3.2 of Wainwright’s book and also see Chapter 7 of the book by
Lugosi, Massart, and Boucheron.

4. Transportation approach:
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Lemma 1.4 (Bobkov-Gotze). Given a measure µ ∈ P(Rn),

X ∼ µ, ∀f 1-Lipschitz, f(X)is sG(σ) ⇐⇒ W1(ν, µ) ≤
√

2σ2 KL(ν || µ)∀ν ∈ P(Rn),

where W1 is the transportation distance and KL is the relative entropy.

This property on the right also tensorizes in some way. For more on this, see chapter
3.3 in Wainwright’s book or chapter 4 in van Handel’s book.
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